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Abstract

We describe a general strategy we have found effective for parallelizing solid mechanics simulations. Such simulations often have
several computationally intensive parts, including finite element integration, detection of material contacts, and particle interaction if
smoothed particle hydrodynamics is used to model highly deforming materials. The need to balance all of these computations si-
multaneously is a difficult challenge that has kept many commercial and government codes from being used effectively on parallel
supercomputers with hundreds or thousands of processors. Our strategy is to load-balance each of the significant computations in-
dependently with whatever balancing technique is most appropriate. The chief benefit is that each computation can be scalably
parallelized. The drawback is the data exchange between processors and extra coding that must be written to maintain multiple de-
compositions in a single code. We discuss these trade-offs and give performance results showing this strategy has led to a parallel
implementation of a widely used solid mechanics code that can now be run efficiently on thousands of processors of the Pentium-based
Sandia/Intel TFLOPS machine. We illustrate with several examples the kinds of high-resolution, million-element models that can now
be simulated routinely. We also look to the future and discuss what possibilities this new capability promises, as well as the new set of
challenges it poses in material models, computational techniques, and computing infrastructure. © 2000 Elsevier Science S.A. All
rights reserved.

Keywords: Solid mechanics simulations; Contact; Smooth particle hydrodynamics; Parallel supercomputers

1. Introduction

Solid dynamics simulations are among the most widely used engineering tools. Crash simulations, a
prototypical example, consume more time on Cray vector supercomputers than any other industrial ap-
plication [11]. Commercial and government-sponsored codes such as DYNA [24,12], PamCrash [14,15],
and ABAQUS [1] can be used to answer safety and reliability questions in a variety of crash and impact
scenarios of interest to industry and government. For example, will an automobile frame protect its oc-
cupants in a side-impact collision? Will a shipping container containing hazardous materials burst open
during an accident? At what point will a bridge joint fail due to increased loading? If smoothed particle
hydrodynamics are included in the finite element models, then problems with fluids or highly-deforming
solids or fluid/structure interactions can also be studied.

In all of these cases, running models with sufficient resolution, long-enough timescales, and high-fidelity
material models can be extremely computationally intensive. This makes the codes natural candidates for
parallel implementation. Besides enabling current simulations to be run faster, an efficient parallel imple-
mentation would allow new and significantly larger problems to be addressed. More detailed geometries
could be modeled, along with more complex constitutive models.
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Despite these attractions, large-scale parallelization of solid mechanics calculations has proven to be
quite difficult. A number of previous implementations have failed to scale beyond a few dozen processors.
Reasons for this will be discussed in Section 2. A parallel crash code running efficiently on 16 or 32 pro-
cessors is clearly valuable, but the increasing availability of larger parallel machines is motivation to de-
velop more scalable techniques.

In this paper we describe our general strategy for parallelizing solid mechanics calculations. By using
separate assignments of computational work to processors for different stages of the calculation, we have
developed what we believe is the first truly scalable approach for running these codes effectively on mas-
sively parallel supercomputers. Over the past few years we have used the PRONTO-3D transient dynamics
code as a test-bed for our strategy. It is similar in scope to the codes listed above and also includes an SPH
modeling capability.

We sketch our parallelization strategy in Section 3. At the end of that section we provide performance
results for PRONTO-3D running on the Sandia/Intel TFLOPS machine. In Section 4 we illustrate the kinds
of analyses being performed with parallel PRONTO-3D. The ability to run at this scale has made a
qualitative difference in the kinds of modeling questions that can be analyzed and answered. Finally, in
Section 5 we discuss some of the lessons learned from our effort. In particular, we highlight some additional
challenges and opportunities for both the computational mechanics and parallel computing communities in
the arena of solid mechanics simulation.

2. Background

A finite-element (FE) solid mechanics simulation performs at least two significant computations each
time-step. The first of these is the computation of stresses and strains within the FE mesh. The second is the
detection of ““‘contacts” between pairs of interpenetrating surface elements. These interactions are illus-
trated in Fig. 1. The basic idea is that no two bodies can occupy the same space at the same time. When
contact pairs are detected, ““push-back” forces are computed to correct the positions of the elements at the
end of the time-step to prevent unphysical interpenetration of two solid objects.

If the simulation includes a gridless Lagrangian formulation, like smoothed particle hydrodynamics
(SPH), then a third computational step is required. This is the calculation of the interactions of each SPH
particle with its neighboring particles. Unlike, finite elements which have static connectivities (to nodes) to
compute gradients, SPH particles must search for their nearest neighbors to compute the necessary gra-
dients. This requires a global search for geometric neighbors inside a sphere of influence around each
particle. SPH particles also need to be included in the contact detection and push-back computations.

(a)
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Fig. 1. Various types of mesh/mesh and particle/mesh contacts: (a) self contact; (b) two distinct bodies penetrating one another; (c) two
interpenetrating surfaces, enforcement must occur at nodes B and F.; (d) particle/mesh contact.
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Parallelization of finite element techniques and particle methods have been well studied in isolation. We
will briefly highlight the approaches used in Section 3. However, the contact detection task is unique to
solid mechanics simulations and has proven to be a stumbling block to efficient parallelization of such codes
on large numbers of processors. The reason for this is that the contact detection problem has three
characteristics which make it difficult to load-balance: it is global, irregular, and dynamic.

In the parallel sense, contact detection requires global communication because any two processors can
potentially own a pair of contacting surfaces. This is in contrast to the FE computation which only requires
an exchange of information between elements connected by the topology of the FE mesh. Thus, a processor
need only to communicate locally with a few neighboring processors to perform the FE computation. In
contact detection, a surface element on one processor can impinge upon an element that earlier was far
away and owned by any other processor.

For similar reasons, the communication required to detect contacts is irregularly structured. Processors
need to exchange information if the mesh or particles they own are in close proximity to each other. Instead
of simple, regular patterns like those supported in standard message passing libraries, this requires complex
interactions between processors.

Contact detection is dynamic because which pairs of surfaces are close enough to each other to po-
tentially interpenetrate changes dramatically over the course of a simulation. Again, this is in contrast to
the FE computation which can take advantage of the mesh connectivity and resulting interprocessor
communication pattern being static. In contact detection, some kind of dynamic communication pattern is
necessary to continually acquire current information about which other surfaces are near a processor’s
contact surfaces.

Given these difficulties, how can we efficiently parallelize the task of contact detection? Several authors
have reported on their efforts to parallelize contact detection on SIMD or data-parallel computers
[18,20,25]. None of these efforts exhibited scalability on large numbers of processors. These results are
consistent with the general observation that unstructured problems are difficult to parallelize effectively on
SIMD machines. In part for this reason, SIMD architectures have largely been displaced in the high-
performance computing world by message-passing and shared-memory parallel computers.

On message-passing and shared-memory machines the most common approach in transient dynamics
simulations has been to use a single, static decomposition of the mesh to perform both FE computation
and contact detection [14-17,19,22]. At each time-step, the FE region owned by a processor is bounded
with a box. Global communication is performed to exchange the bounding box’s extent with all pro-
cessors. Then each processor sends contact surface and node information to all processors with over-
lapping bounding boxes so that contact detection can be performed locally on each processor. Although
simple in concept, this approach is problematic for three reasons. First, contact detection only involves the
surface of the mesh, while the FE analysis also includes interior elements. Thus, a good decomposition of
the FE problem may do a poor job of balancing contact detection. This is not as severe an issue for
problems dominated by shell elements (e.g., [17]). Since every shell element is on a surface, a single de-
composition can balance both parts of the computation. Second, the geometric extent of a processor’s sub-
domain may become large, so the bounding box surrounding that processor’s elements will overlap with
many other processor’s boxes. Even if the initial overlap is small, as objects move and deform during the
calculation large overlaps can ensue. Communicating potential contact information will then require large
amounts of communication and force the processor to search a large fraction of the global domain for its
contacts. Third, the bounding box enclosing a processor’s elements will generally contain a significant
amount of volume outside those elements. Consequently, much of the data communicated to a processor
is unnecessary. This causes extra time to be spent in the communication and also when searching for
contacts.

A different approach to parallelizing contact detection was developed by Har [8]. In this work, the 3D
geometry is divided into bins, and processors are dynamically assigned bins in which to search for contacts.
The dynamic assignment is handled with a master/slave technique. All the information is sent to processor
0, who parcels it out to the other processors. This approach suffers from two significant scalability limi-
tations. First, processor 0 must have enough memory to hold the entire contact problem. And second,
communication costs are quite high to send all the data to processor 0 and then have processor 0 send it out
again.
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An alternative approach, more similar in spirit to our work and which was developed concurrently, is
described by Hoover et al. [12]. This approach uses a different decomposition for contact detection than for
the FE analysis. In their method, they decompose the contact surfaces and nodes by overlaying a fine 1D
grid on the entire simulation domain and mapping the contact surfaces and nodes into the 1D “slices”. A
variable number of slices are assigned to each processor so as to load-balance the number of contact el-
ements per processor. Each processor is responsible for finding contacts within its collection of slices which
it can accomplish by communicating with processors owning adjacent slices. While this approach is likely to
perform better than a static decomposition, its 1D nature limits its utility on large numbers of processors.
The implementation described in [12] suffered from some load imbalance on as few as 32 processors of a
Cray T3D.

In summary, to our knowledge no previous attempts at parallelizing contact detection have scaled to
more than a few dozen processors.

3. Algorithmic details

In this section we outline the algorithms and load-balancing techniques that can be used to parallelize a
solid mechanics code. Full details of our work with PRONTO-3D can be found in some of the references
[2,3,21]; here we simply highlight the general strategy. We believe these ideas are generally applicable to any
solid mechanics code, as well as other multi-physics finite element codes, an issue we return to in Section 5.

As discussed in the previous section, a mechanics time-step consists of several stages. A typical sequence
is listed in Fig. 2 for a dynamics code using an explicit integrator. A slightly adapted sequence of steps
would be valid for a quasi-statics code using an implicit solve to compute, for example, the relaxed position
of a gridded object subject to a load. These details would not change the basic concepts outlined in the
discussion to follow.

The FE computation in step 1 of Fig. 2 uses the material properties of the physical elements to compute
a local stress or force acting on each element due to its surrounding connected elements. In general, this
applied force will deform the element and thus the physical object described by the Lagrangian mesh as the
simulation proceeds. This FE computation will be load-balanced if each processor owns an equal number
of mesh elements that require the same amount of time to process. For cases where different elements
require different compute times due to material model differences, each element can be weighted propor-
tional to its CPU cost, and elements assigned to processors so as to balance the total weight across pro-
cessors. The communication cost within the FE step will be low if the elements owned by any one processor
have minimal connection to elements owned by other processors. Because the mesh connectivity is es-
sentially fixed for the duration of a simulation, static load-balancing techniques can be used to achieve these
goals. We use the software package Chaco [10] as a pre-processor to perform the partitioning; it has several
graph-based algorithmic options suitable for the task. Similar FE parallelization strategies have been used
in other transient dynamics codes [8,12,14,15,17,19]. In practice, parallel efficiencies of over 90% can be
achieved with these methods when large meshes are mapped to thousands of processors.

In step 2, SPH computations are performed. The interested reader is referred to [4] for details of how
SPH is formulated within a solid mechanics code. The key point is that two particles interact if their spheres
of influence intersect. To implement this efficiently in parallel there are two requirements: that each

—

Compute FE forces on each mesh element
Compute SPH forces on each particle

Move mesh elements and particles

Detect mesh/mesh and particle/mesh contacts
Generate push-back forces

Final update of mesh and particle positions
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Fig. 2. One time-step of a solid mechanics calculation.
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processor own an equal number of particles, and that the region owned by a processor be geometrically
compact so that neighbors can be found quickly and with a minimum of communication. An added dif-
ficulty is that during the course of a simulation, particle density can undergo large fluctuations — in a
simulation of an explosion, for example. Thus, no static spatial decomposition of particles to processors
will satisfy these two requirements over time. Instead we use a dynamic load-balancing technique known as
recursive coordinate bisectioning (RCB) [6,13] for the SPH particles and re-balance them each time-step (or
every few time-steps). RCB assigns a rectangular sub-domain containing equal numbers of particles to each
processor. The simple rectangular shape of the sub-domain makes it easy to find neighboring particles in
other processor’s sub-domains. RCB has the additional advantage that small movements of the particles do
not cause large perturbations in the decomposition, which means data movement is minimized when re-
balancing occurs. The only additional communication cost in the SPH computation is the exchange of
particle information (positions, forces, etc.) across the surface of each processor’s RCB sub-domain. Since
the SPH computation itself scales as the volume of the sub-domain, step 2 portion of the time-step scales
well in parallel.

Step 3 of Fig. 2 is the time integration; forces previously computed on mesh elements and SPH particles
are used to advance their positions and velocities. This step is perfectly parallel since each processor owns
equal numbers of elements and particles and no interprocessor communication is required.

Step 4 is the contact detection task. The movement of mesh elements and particles in step 3 will cause
unphysical interpenetrations like those depicted in Fig. 1. An efficient parallelization of this task is critical,
since in a serial simulation it can require over 50% of the run time. For reasons outlined in Section 2, a
static decomposition, such as the one used for assigning FE mesh cells to processors, will not balance the
contact search. Rather, we need a dynamic decomposition of all objects that will potentially come in
contact (surface elements and SPH particles). If each processor ends up with equal numbers of objects, then
the search for contacts will be load-balanced. Additionally, since contact surfaces have a finite extent or
bounding box that encompasses their volume of influence as they move during the time-step, we will need to
acquire contact surfaces from neighboring processor’s domains. Similar to the SPH discussion, this will
have minimal cost if each processor’s sub-domain is geometrically compact and shaped to make this ac-
quisition fast. In fact, the RCB method used for SPH particles again satisfies all these requirements. Thus,
at the beginning of step 4 all the contact surfaces (faces of elements on the surface of objects) and SPH
particles are balanced across processors via RCB, using an earlier decomposition as a starting point. Note
that though we use the same routine, this is a different decomposition on a different set of data than the
SPH RCB decomposition.

When the RCB contact decomposition has been created, each processor owns a rectangular box con-
taining equal numbers of contact objects. Contact surfaces with bounding boxes that extend beyond a
processor’s sub-domain are cloned and sent to neighboring processors. Each processor is now ready to
search for contacts within its box. A key point is that this search is conceptually identical to the global
detection problem we originally formulated, namely, to find all the contacts between a collection of surfaces
and nodes bounded by the entire simulation domain. In fact, at this point in step 4, each processor simply
calls the original unmodified serial contact detection routine. This is important for computational speed
and also for maintainability since the serial contact-detection algorithm may have various optimizations to
efficiently find contact pairs. In PRONTO-3D, for example, the serial detection routine spatially sorts the
contact nodes in multiple dimensions, then searches the sorted lists for each surface’s bounding box to find
possible contacting nodes [9]. This list of possible contacting nodes is then processed to determine those
actually in contact and to calculate push back directions and magnitudes. All of this computation can now
take place on-processor without communication. The resulting information about contact pairs is com-
municated back to the FE and SPH decompositions to prepare for the next step.

In step 5 of Fig. 2, each processor computes push-back forces on the small number of its particles or
mesh elements that came into contact on the current time-step. These new forces are used in step 6 to adjust
the positions of the interpenetrating elements and particles.

In summary, we have outlined a parallelization strategy for a prototypical solid mechanics simulation that
uses 3 different decompositions within a single times-tep: a static FE-decomposition of mesh elements, a
dynamic SPH-decomposition of SPH particles, and a dynamic contact-decomposition of contact surfaces
and SPH particles. We use a graph-based decomposition for the mesh elements; the other two decompositions
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are updated by RCB. The key advantage of this approach is that each of the 3 critical time-consuming
stages of the time-step is load-balanced independently. The disadvantage is that extra communication must
be performed to move mesh and particle information between the decompositions and to update the dy-
namic decompositions. However, if this cost is not too high, we expect the strategy to scale to large numbers
of processors.

As evidence of the scalability of this approach, we present two sets of timing data for parallel PRONTO-
3D running on the Sandia/Intel TFLOPS machine at Sandia National Labs. This machine has 4500
computational nodes, each of which has two commodity 200 MHz Pentium-Pro processors and 128 MB of
memory [23]. The nodes are configured in a 2D mesh with a proprietary communication network that
supports a 350 MB message-passing bandwidth between nodes (in the limit of long messages) with 20-30 ps
latencies. The implementation of the parallel algorithms described above and of PRONTO-3D itself is all
within a distributed-memory message-passing paradigm using standard F77 and C code with MPI library
calls for interprocessor communication.

Our first test problem is the crushing of an idealized shipping container by an inclined wall. Both the wall
and the cylinder are modeled as perfectly plastic materials with properties of steel. This is a pure FE
problem; no SPH particles are included. It is a stringent test of the contact detection algorithm’s robustness,
since the container crumples on itself as it is crushed nearly flat, similar to a soda can being stepped on.
Fig. 3 shows CPU timings for a series of scaled-size crush simulations where the container and wall are
meshed more finely as more processors are used. On one processor a 1875-element model was run. Each
time the processor count was doubled, the number of finite elements was also doubled by refining the mesh
in a given dimension. Thus, the leftmost data points are for a 3750 element simulation running on 2
processors; the rightmost points are for a 6.57 million element simulation on 3504 nodes of the TFLOPS
machine. The topmost curve in Fig. 3 is the total CPU time per time-step averaged over a 100 microsecond
(physical time) run. On the small problems this is a few hundred time-steps; on the large problems it is
several thousand, since the time-step size must shrink as the mesh is refined. The lower curve is the portion
of time spent in the FE computation. Contact detection is the time between the lower and middle curves,
about one-half of the total CPU time for this simulation. Additional overhead, including the contact push-
back, is the time between the top two curves.

The timing data shows excellent scalability of the parallel algorithms on thousands of processors. Linear
speed-up would be horizontal lines on this plot; the FE computation scales nearly perfectly. Contact de-
tection consumes a roughly constant fraction of the time for all runs. The variations in these timings are
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Fig. 3. Average CPU time per time-step on the TFLOPS machine to crush a container meshed at varying resolutions. The mesh size is
1875 finite elements per processor at every data point. The lower curve is finite element computation time; the middle curve includes
both FE and contact detection time; the upper curve is total CPU time including contact push-back.
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Table 1
Breakdown of CPU seconds per time-step of perform a penetrator simulation on different numbers of processors P of the TFLOPS
machine

P FE SPH Contacts Total Speed-up
64 0.409 4.55 1.24 6.27 1.00

128 0.191 2.36 0.715 3.30 1.90

256 0.102 1.30 0.533 1.97 3.19

512 0.0525 0.708 0.334 1.11 5.65

1024 0.0303 0.423 0.238 0.704 8.90

primarily due to the changing surface-to-volume ratios of mesh elements as refinement is done in different
dimensions. The total CPU time begins to rise in a non-scalable way on the largest P = 2048 and P = 3504
runs because the normally small push-back computation becomes somewhat unbalanced on very large
numbers of processors.

A second set of timing results are for a parallel PRONTO-3D simulation of a metal penetrator impacting
a target at approximately 700 ft/s. These were simulations performed by Kurt Metzinger at Sandia. Pictures
of similar simulations are shown in Section 4. The complex geometry of the penetrator was modeled with
155000 finite elements; the target was modeled with 415000 SPH particles since it undergoes large de-
formations during the impact. Timing data for this fixed-size problem running on the TFLOPS machine is
shown in Table 1 on varying numbers of processors. Average per-times-tep timings are shown for the FE
computation, the SPH computation, and the contact detection which in this case includes both mesh-mesh
and mesh—particle contacts.

Due to memory limitations the smallest number of nodes this problem could be run on was 64. The last
column in the table indicates the speed-up relative to the 64-processor run as a baseline. The timing data
shows that PRONTO-3D achieves good parallel performance even for fixed-size hybrid FE/SPH problems
where all 3 decompositions are active every time-step.

4. Applications

In this section we highlight several computational studies currently being performed with the parallel
PRONTO-3D code by colleagues at Sandia.

4.1. Airplane crash

Crash simulations are the most common kind of simulation performed using non-linear transient dy-
namics codes. The level of detail that can be modeled is limited primarily by the size of the model. Sandia
has been asked to study the safety of igloo structures at a facility used to store nuclear weapon components.

Determining whether a storage structure can withstand the impact of an incoming airplane is difficult. As
the aircraft impacts the igloo, fracturing of the fuselage and wings occur. The analysis is further compli-
cated by the need to model the fuel leaking from the wing tanks and potentially causing a fire or explosion.
The goal in this project was an order-of-magnitude prediction of the impact loads on the structure and of
the fuel dispersion as opposed to a detailed analysis of the aircraft break-up. We modeled the KC-135R
aircraft with traditional finite elements and its fuel with SPH particles. While there are many different
approaches (element free galerkin, j integral, crack tip opening angle, node release, etc.) one could use to
handle the tearing and break-up of a thin skinned structure, the approach we have considered is element
deletion. In this approach, an element is deleted when a parameter such as damage exceeds a critical value.
Newly exposed surfaces are then added to the list of potential contact surfaces.

Initial simulations of this scenario concerned the fuel dispersal pattern from a wing impacting a vertical
pole. Fig. 4 shows the fuel cloud and damage to the wing. In the image on the right the fuel particles are
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Fig. 4. Combination finite element and smoothed particle hydrodynamics simulation of fuel dispersal from an airplane wing.

deleted to show the tearing of the wing more clearly. This calculation was run on 128 nodes of the TFLOPS
computer using 110000 hexahedral and shell elements and 130000 SPH particles.

Current efforts are concentrated on modeling the entire aircraft. The full model is shown in Fig. 5 which
uses 516000 shell elements to model the airplane and 540000 SPH particles to model the fuel. In the lower
portion of the figure, the fuselage and fuel are removed to show interior detail. Fig. 6 is a simulation of the
fuselage impacting an idealized rigid target. The fracturing in the nose tip is clearly visible. The next stage of
the project is to model the ground with SPH particles using a volumetrically yielding soil model. This will
bring the total model size to over 2 million elements. In the final analysis, the fuel, soil, airplane and igloo
will all interact.

4.2. Foam crush

A second application is the response of foams of various types. Foams are often used to distribute
impact forces or to absorb energy in collisions. The macroscopic properties of foams depend upon their
fine-scale structure in a complex way that is not well understood. Better constitutive models of foam
properties can be obtained through simulation of small-scale behavior. Unfortunately, very large simula-
tions are necessary to be able to compare computations to experiments.

The top portion of Fig. 7 depicts the initial state of a simulation of an open-cell foam, with cells about 1
mm in diameter. A linear elastic material model was used for the strut material, but the complex buckling

Fig. 5. Two views of a finite element grid representation of an aircraft used for crash scenario simulations.
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Fig. 6. An aircraft fuselage nose impacting a rigid target.

Fig. 7. Finite element representation of a foam between two plates before and after compression.

and folding generates complex non-linear behavior. The foam is crushed from above by a fast moving plate
while resting on a rigid surface. The lower portion of the figure reveals there is some crush near the im-
pacting plate, but the majority of the compaction occurs on the opposing boundary. This is due to the
reflection of stress waves off the bottom plate and is consistent with experimental observations.

Each of the foam struts was modeled with multiple hexahedral elements, for a total of about 900000
elements. Previously, beam finite elements were used, but the complex deformation patterns associated with
large crush were difficult to capture with beam elements. By contrast, hexahedral elements are able to model
very complex contact conditions. The drawback to using hexahedrals, aside from the number of elements
needed, is that a very small time-step is required to properly integrate the motion. This problem was run on
512 nodes of the TFLOPS machine and required 8.8 h of CPU time to run 650000 time-steps. The com-
plexity of the model and the contact interactions between struts can be appreciated in the close-up view
shown in Fig. 8. Red regions in this figure are those sustaining highest stress.

4.3. Metal forming

A third application is the simulation of metal forming, a widely used manufacturing process for thin
metal sheets. In this process, a metal plate is squeezed between two dies to produce the desired shape, such
as an automobile body panel. In many cases the final shape of the formed piece is dependent not only on the
shape of the dies but also on the friction between the dies and the workpiece. The most accurate way to
model metal forming is to use hexahedral elements that can capture the local thinning or thickening of the
plate and the associated normal forces that determine the friction response. The simulations are often
performed using quasi-statics codes to ensure convergence at every increment as the metal is molded to the
die. Although the details of contact enforcement are different in a quasi-statics code, the contact detection
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Fig. 8. Close-up view of the foam struts after compression. The colors represent local stress with red indicating regions of high stress.

the top die has been removed for
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al screen being pressed between two dies.
visualization. After forming, the screen has modeled to the die configuration as shown in the bottom image.

Fig. 9. Side and top views of a met
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operation is essentially identical to that performed in a transient dynamic code such as PRONTO-3D. In
fact we have ported our parallel contact detection modules into JAS3D, a quasi-statics code derived from
PRONTO-3D. This has allowed us to simulate this class of problems on massively parallel machines.

Fig. 9 shows a calculation run by Gerry Wellman. A screen is pressed between two dies with the screen
held in place by blank holders. One of the questions that can be studied by simulation is the effect of die
orientations to see how precisely they must be manufactured. If a moderate amount of imperfection in the
dies does not dramatically reduce the quality of the final screen, the savings could be significant. The initial
analysis shown in the figure modeled only a 10° arc of the screen. A side view including the blank holders
with both dies is shown at the top of the figure. The 10° degree wedge contains about 45000 hexahedral
elements and its forming can be simulated quickly on 32 processors. The bottom portion of the figure shows
the final formed screen pressed against the die. The full model will include at least a 180° section and
possibly a full 360° circular screen depending on the orientation of the dies. This will require about
1.6 million elements to model accurately, with contact detection and push-back consuming a large portion
of the computation time.

4.4. Projectile impact

A final application is that of penetration problems where a projectile traveling at high velocity impacts
and pierces a target. This class of problem is very challenging to model for several reasons. First, due to the

Fig. 10. Comparison of experimental X-ray (left) and simulation results (right) for penetration of a steel rod through an aluminum
target.
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Fig. 11. Simulation of a penetrator impacting a target. The penetrator is modeled with finite elements; the target is modeled with SPH
particles.

large deformations that occur in the target, traditional Lagrangian meshes often suffer from element in-
version. One approach that avoids this problem is to model the target with SPH techniques. Second, the
penetrator structure can be quite complicated and we are often interested in the response of its interior to
the collision. This requires a large number of elements to attain sufficient resolution.

An example calculation due to Kurt Metzinger compared a coupled FE-SPH simulation to experiments
for the oblique penetration of a steel rod through an aluminum plate at a velocity of 400 m/s. Fig. 10 shows
excellent agreement between X-ray photographs of the experiment and the simulation results. Initially, both
sets of data show the penetrator bending upwards. As it perforates the plate, it turns over and bends
downward. As the resolution of the meshed penetrator is increased, the degree of bending in the final shape
approaches that of the experiment.

A more sophisticated computation is shown in Fig. 11 for an impact at 200 m/s. The internal geometry of
the penetrator is modeled with 155000 hexahedral elements with full contacts. The target is modeled with
415000 SPH particles. An outer ring consisting of 6500 4-node shell elements is used to constrain the target
material from free radial expansion. A full 3D model is necessary for this simulation because the penetrator
has a 3D geometry and oblique impacts are important. This calculation was run for 161000 time-steps on
1024 nodes of the TFLOPS machine and required about 36 h to complete. The ejecta of material at both the
entrance and exit of the target is consistent with experiments for this type of event. The right-hand portion
of the figure shows a cut-away view with the hole that has been cut through the target.

5. Vistas

As shown in the previous sections, adapting state-of-the-art solid mechanics codes and algorithms so
they execute efficiently on massively parallel supercomputers is a challenge requiring the combined skills of
engineers, finite element analysts, and computational and computer scientists. This effort has resulted in a
solid mechanics code which can run scalably on thousands of processors. In this section we discuss what the
payoffs are for this effort as well as what other issues are blocking further progress.

One obvious benefit of a code being able to run on thousands of processors is that a new class of
simulations can be attempted for the first time. Questions can be asked and addressed at length and time
scales that could not be contemplated before. However, even running PRONTO-3D on hundreds of
processors has meant a enormous leap in the kinds of problems that are accessible to the analyst on an
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every-day basis with reasonable turn-around time. Consider that a node on the TFLOPS machine con-
sisting of two commodity Pentium CPUs is now nearly as fast as a single processor of a Cray Jedi machine
running a version of PRONTO-3D optimized for that platform. Thus, even a few hundred processors can
perform simulations many times faster than they could have been performed previously on traditional
vector processors. This power can be used to increase the spatial or temporal resolution of a simulation
grid, to run a more accurate material model, to do parametric studies of a system’s response under varying
conditions, or to embed the dynamics simulation inside an optimization loop where parameters are varied
to optimize the design of a critical component. Alternatively, stochastic sampling can be used to gain a
clearer understanding of the range of possible responses, instead of performing a single, deterministic
calculation.

However, the increase in compute power does not always have the impact one would anticipate. Con-
sider that for a 3D model, an increase in spatial resolution by a only a factor of two, along with the requisite
halving of the time-step when grid cell sizes are reduced, requires a 16-fold boost in compute power. Also,
the natural tendency to run bigger and longer calculations brings a new set of challenges, even if the
simulation itself can be run quickly. Finite element grid generation is often extremely difficult for multi-
million element models of complex geometries. The data sets generated by the dynamics can easily consume
100-1000s of MB. Even if the parallel machine can dump these data sets quickly to parallel disk farms, they
typically must be reassembled for post-processing analysis or moved to another large-memory platform for
visualization. And we have found current visualization tools are generally inadequate to deal with data sets
of these sizes. All in all, the analyst often spends considerably more time on the pre- and post-processing
phases of the problem than waiting for the simulation to run.

Given these bottlenecks it is natural to ask if there is a need for solid mechanics (or many other) codes to
scale to hundreds or thousands of processors. Since the majority of current parallel computing platforms
are more modest in size, aren’t algorithms that enable a code to run reasonably well on 16 or 32 processors
sufficient? Aside from the need to occasionally run huge problems, which can only be done on large
numbers of processors, we offer two answers to this question.

While predicting the future of computing platforms is difficult at best, and is driven by forces far re-
moved from scientific computing, one current trend is clear. There is a cost advantage to building a parallel
system out of commodity parts — CPUs, memory, networks, disks, etc. Distributed-shared memory (DSM)
machines such as the SGI origin and similar offerings from other vendors who sell high-end integrated
systems are popular purchases for those who can afford them. However, there is a growing grassroots
movement to build-your-own parallel computer. Beowulf-style clusters of Pentium or DEC Alpha chips,
strapped together with fast Ethernet or Myrinet networking, are springing up in laboratories and academic
departments at an astonishing rate. The communication bandwidths and latencies on clustered systems are
poor compared to DSM machines or even traditional distributed-memory machines like the Intel Paragon
or TFLOPS or Cray T3E. This places a premium on minimizing the communication cost of an algorithm if
it is to run well on even a few dozen processors. We also note that for the code developer, the ideal scenario
is to write code that will run on any platform. The message-passing programming paradigm, implemented
with portable MPI library calls, is a robust solution. All parallel machines of the foreseeable future, be they
distributed or shared memory, will support MPI. Coding in this style forces the application developer to
think about how to store data locally on the processor which will perform the computation on those data.
This is generally advantageous even on shared-memory machines that support global memory access. In
short, our experience has been that implementing the most-scalable, minimum-communication, distributed-
memory algorithm, is often a win in the long term, even if it means more effort up-front, because the code
will run efficiently on any platform.

A second justification for our development effort is that we have discovered that our algorithms and
parallel strategy can be re-used in a variety of other codes and applications. For example, our contact—
detection algorithm has been ported into three other Sandia codes: JAS3D — a derivative of PRONTO-3D
used for quasi-statics problems like the metal forming example in Section 4, ALEGRA — a new mixed
Lagrangian/Eulerian shock physics code, and SIERRA — a new multi-physics code being developed as a
framework for runing a variety of coupled mechanics, thermal, and fluid-flow simulations. Since some of
these codes are works-in-progress, it is difficult to predict how sensitive their parallel performance will be to
load-balance issues, even on a few dozen processors. Undoubtably, their parallel performance will be
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problem dependent. Thus, we feel safest having designed algorithms that should perform well in whatever
application they become a part of.

At this point, it is worth saying a few words about the low-level design of our parallel algorithms. We
have found it advantageous to write our tools with an object-oriented design in mind. This can be done in
standard C (or even F77/F90) with a bit of forethought without the performance sacrifice that object
oriented languages often impose. For us the chief benefit has been an easier path to re-use of certain
functionality in other, sometimes unforeseen, applications.

A brief example illustrates this point. The SIERRA framework mentioned above is designed to solve
problems where an object may be overlaid with multiple grids — e.g., one for mechanical deformation,
another for thermal conduction. Within a time-step there is the need to interpolate solutions back and forth
from one grid to the other. The interpolation is complicated by the fact that the grids may adapt or move
independently during the course of a simulation. Computationally this grid transfer task entails the fol-
lowing: for each nodal point of the first grid, find the element in the second grid which contains it. Then
interpolate the solution quantity (or quantities) of interest to the nodal point using the nodal values of the
containing element. In parallel, this is more complex because there is no guarantee the two grids will be
decomposed to processors in the same way, particularly if they adapt or move over time.

As we developed a parallel algorithm for the grid transfer operation, we discovered we were addressing
many of the same issues that arose in parallel contact detection. How do you collect dispersed data so that a
single processor can do a local search computation? How do you find which processors own neighboring
sub-domains so that elements which extend beyond one processor’s domain can be shared appropriately?
And what is the optimal way to setup communication patterns between irregular groupings of processors?
The answers to these questions can use many of the same load-balancing and low-level communication
operations we implemented for contact detection. Embedding these functions in a high-level grid transfer
operation was made easier by defining a clean interface to the functions and hiding many of the data
structures they generate from the calling program by storing them in the code modules themselves. These
are object-oriented design principles that have been successfully used in other scientific libraries as well
[5,7]. The result is a toolkit of load-balancing and communication primitives that can be assembled in
interesting ways to perform grid transfer or contact detection or other parallel load-balancing and de-
composition tasks.

Finally, what are the near-term challenges for the solid mechanics research community? As is often the
case, having faster codes serves to amplify other weaknesses in one’s problem-solving methodology. We
have already indicated some bottlenecks in the pre- and post-processing phases that need to be addressed by
the computational science community. However, the “brute-force” solution of adding millions of elements
to solve a hard mechanics problem may not always ensure accurate solutions to the physics of the problem.
Two alternative approaches to increasing accuracy are better material models and adaptive gridding
technology.

The constitutive relations implemented in a material model embody the central physics underlying any
solid mechanics simulation. PRONTO-3D is used to simulate the response of an enormous variety of
materials — from concrete, metal and wood to ceramics, gasoline and soil. As grid sizes shrink, there is also
a growing need to model composite materials, i.e., those with heterogeneous composition at a small length
scale. With the resolution made possible by parallel mechanics codes, the fidelity of simulations may now be
limited by the material models. Conveniently, in some cases, the ability to model multi-million element
grids can help in the development of better material models. For example, consider the foam simulations of
the previous section. For materials that have a microstructure, a detailed simulation can be performed at
the micro-scale. The results can be used to validate a continuum-level constitutive relation for the material
that can be used in other, more macro-scale simulations.

On-the-fly grid adaptation in response to stress gradients induced in a physical object offers a potentially
great savings in the number of finite elements needed to solve a problem to a desired accuracy. More
commonly used in fluids calculations, adaptive methods are an active area of research in solid mechanics
simulations. Issues of what criteria should drive the adaptivity, how to insure the new meshes conform to
the deforming objects, how to best interpolate solutions from old to new meshes, are all open questions. On
a parallel machine additional issues arise, such as how to generate the new mesh consistently across pro-
cessor boundaries, or how to dynamically load-balance if the new mesh is not distributed evenly among the
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processors. Achieving adaptivity within a multi-physics code using multiple grids, all running efficiently on
a large parallel machine, is a grand-challenge level goal that will require continued long-range effort from
the solid mechanics community.
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